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A B S T R A C T

High throughput toxicokinetic (HTTK) methods address chemical risk assessment data gaps but require chemical- 
specific values that can be obtained by in vitro measurements or in silico models. In this study, seven quantitative 
structure property relationship (QSPR) models were used to estimate intrinsic hepatic clearance (Clint), fraction 
of chemical unbound in plasma (fup), and/or TK elimination half-life (t½). Performance of the QSPR models was 
evaluated using literature time-course in vivo TK data, mainly from rats. Simulations of the in vivo data were 
made with a high throughput physiologically based TK (HT-PBTK) model using the different QSPR model pre
dictions as inputs. We estimate that using rat in vivo data to evaluate QSPR models trained on human in vitro 
measured data might inflate error estimates by as much as root mean squared log10 error (RMSLE) 0.8. A 
sensitivity analysis showed that Clint and fup parameters inform predictions of area under the curve (AUC) and 
steady-state concentration (Css). We estimate that AUC can be predicted by HTTK with RMSLE 0.9 using in vitro 
measurements and 0.6–0.8 using QSPR model values. We anticipate that, for some novel compounds, QSPRs for 
HTTK input parameters will give predictions of TK similar to those based on in vitro measurements.

1. Introduction

Toxicokinetics (TK) describes chemical absorption, distribution, 
metabolism, and excretion (ADME) by the body as a function of time 
(O’Flaherty, 1981). TK is critical information for assessing health risks 
posed by chemical exposures (Rotroff et al., 2010; Tonnelier et al., 

2012). While TK has been part of human pharmaceutical safety assess
ment for decades, the data requirements under most non- 
pharmaceutical chemical regulatory frameworks do not consistently 
include TK. Regulations such as the European Union’s Registration, 
Evaluation, Authorisation and Restriction of Chemicals (REACH) and 
the United States’s Toxic Substances Control Act (TSCA) have no specific 
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requirements to generate TK data (Reale et al., 2024; U.S. Congress, 
2016). However, TK information is valuable in 1) the interpretation of 
biomonitoring data (Reale et al., 2024; Sobus et al., 2011), 2) dosimetric 
anchoring of animal toxicity studies (National Research Council, 1983), 
3) substantiating read-across justifications (Escher et al., 2019), and 
especially 4) quantitative in vitro-in vivo extrapolation (QIVIVE) 
(Wetmore, 2015) of New Approach Methods (NAMs) data (Kavlock 
et al., 2018) for next generation risk assessment (NGRA) (Moxon et al., 
2020; Paul Friedman et al., 2020; Paul Friedman et al., 2025; Punt et al., 
2020; Weitekamp et al., 2025).

Of the many thousands of substances that exist in commerce or in the 
environment, only a small percentage have been characterized in terms 
of their toxicity and of these, an even smaller portion have relevant TK 
information (Bell et al., 2018; Chang et al., 2022). Animal studies have 
been traditionally used to generate TK data. However, given the large 
number of environmental substances lacking data, the resources 
required to generate TK data using animals are neither practical nor 
desirable from an ethics perspective (Fentem et al., 2021). This is 
especially true given the call to reduce vertebrate testing under regu
latory frameworks such as REACH (Lillicrap et al., 2016) and TSCA (U.S. 
Environmental Protection Agency, 2018).

“High Throughput Toxicokinetics” (HTTK) is a combination of 
efficiently-obtained chemical-specific data and chemical-agnostic 
mathematical models (Breen et al., 2021). Pre-clinical pharmaceutical 
researchers developed HTTK to prospectively estimate key TK summary 
statistics (such as area under of the plasma concentration curve or AUC) 
(Wang, 2010). HTTK data typically consist of specific high throughput, 
in vitro measures of chemical-specific TK parameters. HTTK models 
consist of generic “high throughput” PBTK (or HT-PBTK) mathematical 
models designed for use with HTTK data and physico-chemical prop
erties (including hydrophobicity and ionization equilibria). We refer to 
the chemical-specific TK parameters needed for HTTK models as “HTTK 
parameters”.

Hazard NAMs such as in vitro high throughput screening assays have 
provided bioactivity data for thousands of chemicals (Jeong et al., 2022; 
Richard et al., 2016; Thomas et al., 2018). With IVIVE it is possible to 
use hazard NAMs to predict the exposures necessary to produce in vivo 
tissue concentrations equivalent to concentrations that have been found 
to be bioactive in vitro (that is, “reverse dosimetry”) (Paul Friedman 
et al., 2020; Paul Friedman et al., 2025; Tan et al., 2006). Given that 
hazard NAMs provide data on thousands of chemicals, HTTK is needed 
to permit IVIVE for similar numbers of chemicals (Bell et al., 2018; 
Chang et al., 2022; Wetmore, 2015).

The U.S. National Academies of Science, Engineering, and Medicine 
have recognized that HTTK enables “first-tier risk-based rankings of 
chemicals on the basis of margins of exposure—the ratio of exposures 
that cause effects (or bioactivity) to measured or estimated human ex
posures” (National Academies of Sciences and Medicine, 2017). Further, 
the ability to simulate susceptible and highly exposed populations is 
important for incorporating TK into probabilistic risk assessments 
(Breen et al., 2022; Koman et al., 2019; Maertens et al., 2022). HTTK 
tools exist that can inform human health risk through simulation of 
human variability (Breen et al., 2022; Jamei et al., 2009a; Kreutz et al., 
2024), susceptible life-stages (Kapraun et al., 2022; Truong et al., 2025), 
and varied exposure scenarios (including oral and inhalation) (Linakis 
et al., 2020). HTTK methods also exist for propagating chemical-specific 
uncertainty from in vitro measurements (Wambaugh et al., 2019) or in 
silico models for those measurements (Dawson et al., 2021).

To date, in vitro experiments have generated HTTK data for 
approximately 1000 chemicals (Black et al., 2021; Lynn et al., 2025; 
Paini et al., 2020; Rotroff et al., 2010; Tonnelier et al., 2012; Wambaugh 
et al., 2019; Wetmore et al., 2015; Wetmore et al., 2013; Wetmore et al., 
2012). Although this work has significantly enhanced the throughput 
and decreased both cost and animal usage, the number of chemicals 
requiring TK information is still large from a cost and time perspective. 
This challenge motivated the study presented here: evaluate 

quantitative structure-property relationship (QSPR) models that predict 
the HTTK parameters required to use HT-PBTK models. Note that while 
we use “QSPR” here, these models are often also referred to as quanti
tative structure-activity relationship (QSAR) models.

We describe the HTTK parameters of interest in Table 1. Multiple 
QSPR models have been developed that predict in vitro TK parameters 
such as intrinsic hepatic clearance (Clint) and fraction of chemical un
bound in plasma (fup) (Chirico et al., 2021a; Dawson et al., 2021; Kirman 
et al., 2015; Pradeep et al., 2020; Sipes et al., 2017). The QSPR models 
range from freely available, open-source models based on public data to 
proprietary models underpinned by large proprietary data sets. In 
addition, some QSPR models have been validated following OECD 
methods for applications in regulatory decision-making (Organisation 
for Economic Co-operation and Development, 2004, 2014) to directly 
predict in vivo human TK properties, such as the terminal elimination 
half-life (t½) (Arnot et al., 2014; Papa et al., 2018). While directly 
relevant to in vivo conditions, predictions of properties like in vivo t½ do 
not yet permit the simulation of human variability that is possible by HT- 
PBTK models parameterized with more basic in vitro TK parameters such 

Table 1 
Relevant Toxicokinetic Parameters – *Indicates parameters that are typically 
predicted from combinations of other, more fundamental parameters. CLGFR is 
approximated as fup * QGFR (the glomerular filtration rate in L/h/kg bw). CLex

halation is approximated as Qalv/Kblood:air (the alveolar blood flow divided by the 
blood:air partition coefficient). kelim is the terminal elimination rate of chemical 
from the body.

HTTK 
Parameter

Definition Units Typical 
Measurement

Typical 
Calculations

Clint

In vitro 
measured 
Intrinsic 
Hepatic 
Clearance

μL/min/106 

hepatocytes In vitro

Scaled to whole 
liver using liver 
volume and 
hepatocellularity

fup

In vitro 
measured 
Fraction 
unbound in 
plasma

Fraction In vitro None needed

t½
Chemical TK 
half-life

hours In vivo t½ = ln(2)/kelim

Css

Steady state 
plasma 
concentration 
resulting from 
1 mg/kg bw/ 
day

mg/L (per 
mg/kg bw/ 
day)

In vivo Css = fbio / CLtot

Cmax
Peak plasma 
concentration

mg/L In vivo Estimated from 
CvT curve

AUC

Time- 
integrated 
plasma 
concentration

mg*h/L In vivo
Estimated from 
CvT curve

Vd
Volume of 
distribution

L/kg body 
weight (bw) In vivo

Can be estimated 
from fup, logP, 
ionization, and 
tissue 
composition

Clhep
Effective liver 
clearance L/h/kg bw Calculated

Can be estimated 
from Clint, fup, 
hepatic blood- 
flow

CLtot
Whole body 
clearance

L/h/kg 
(bw)

In vivo

CLtot = Vd * ln 
(2)/t½ 

or, for model 
“gas_pbtk”: 
CLtot = CLhep +

CLGFR +

Clexhalation

fbio
Systemic oral 
bioavailability

fraction In vivo fbio = AUCoral/ 
AUCiv

kgutabs
Oral 
absorption rate

1 / h In vivo
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as Clint and fup. Each QSPR model has its own training and testing 
datasets comprising a range of pharmaceutical and non-pharmaceutical 
chemicals with different physicochemical properties. Distinct perfor
mance metrics used for optimizing each QSPR. Comparing and con
trasting the ability of these different models is challenging due to 
differences in how the QSPR models were built.

Here, we have evaluated seven QSPR models developed by six 
modeling groups. We started from an initial list of researchers interested 
in HTTK who participated in the ExpoCast community of practice 
(Wambaugh and Rager, 2022) and Tox21 (Thomas et al., 2018). A 
presentation was then made to 19th International Workshop on (Q)SAR 
in Environmental and Health Sciences in June 2021 to further solicit 
involvement from the HTTK QSPR community. Participants represent 
different international academic, regulatory, and commercial entities. 
Five modeling groups used QSPR models to predict Clint and/or fup (the 
TK parameters typically measured in vitro) while two groups predicted 
t½ (typically measured in vivo). The QSPR modeling groups were pro
vided with the chemical identities (including their chemical structures) 
and SMILES structure descriptors (Weininger, 1988) and OPEn (quan
titative) structure-activity/property Relationship App (OPERA) physico- 
chemical predictions (Mansouri et al., 2018) but were not provided with 
the actual in vivo evaluation data. The QSPR model predictions, where 
applicable, were then evaluated with in vitro and in vivo data in a series 
of contexts outlined in Fig. 2 and Table 2.

2. Materials and methods

Table 2 summarizes the data and the statistical approaches used for 
evaluation. Table 3 describes the human HTTK parameter QSPR models 
that were evaluated. QSPR evaluation was conducted at three levels. 
Level 1 compares the QSPR-predicted HTTK parameters to the in vitro 
measured values for a subset of chemicals where measured values are 1) 
available and 2) not included in a QSPR model’s training set. The Level 2 
analysis evaluates the goodness of fit of QSPR-parameterized HT-PBTK 
simulations of plasma and blood concentration vs. time (CvT) values. 
Next, Level 3 evaluates TK summary statistics (for example, peak con
centration Cmax, AUC, t½) derived using the QSPR models. The Level 2 
and 3 analyses use in vivo data mostly for rat (with some human) from 
the CvTdb (Sayre et al., 2020). Therefore, we also estimate the error 
introduced by using human-based HTTK QSPR models for rats via a set 
of chemicals with in vitro measured values for both rat and humans. A 
final analysis examined the sensitivity of the CvT data to HTTK pa
rameters in the different phases of ADME by systematically substituting 
parameters optimized to the in vivo data with HTTK-derived values.

All analyses were performed in the free, open-source statistical 
analysis language R (R Core Team, 2025) v4.6.0 (the current developer 
version). Heatmaps were generated using ggplots::heatmap.2 (Warnes 
et al., 2024) with data clustered on the basis of Euclidean distance via 
base R function stats::dist (R Core Team, 2025). All code is documented 
using RMarkdown (Baumer and Udwin, 2015) and available as supple
mental material at https://github.com/USEPA/CompTox-ExpoCast- 
HTTKQSPRs.

2.1. Evaluation data and analysis

2.1.1. Initial chemical list
Varying amounts of chemical-specific data were available for the 

different evaluations performed. Table 2 describes the number of 
chemicals and types of evaluation performed at each step. The specific 
chemicals studied are available in Supplemental Table 1. To be included 
for analysis, we required that time course in vivo blood or plasma con
centration data be available for either rat or human following single oral 
gavage and/or intravenous dose(s). For each chemical at least one study 
was available in either rat or human. In some cases, multiple studies or 
species were available. Using the initial public release of CvTdb, such 
data were available for 101 chemicals (Sayre et al., 2020). As discussed 

in the Data Filtering sections below, only a subset of these chemicals met 
suitability requirements for QSPR model evaluation (Supplemental 
Table 2). The in vivo measured time-course values are available as 
Supplemental Table 3. As described later in the Methods, chemical- and 
species-specific parameters were estimated for empirical (compart
mental) TK models. As described in Results, chemical-species 

Table 2 
Chemical counts and evaluations.

Step Description Chemicals for 
Evaluation

QSPR 
Models 
Evaluated

Evaluation 
Data 
Reference

Challenge CvT Data Preparation
Initial 

Chemical 
List

Chemicals with 
mostly rat CvT 
data following 
oral and/or 
intravenous 
dosing. Modelers 
were provided 
with chemical 
identity and 
physico-chemical 
properties to make 
human HTTK 
QSPR model 
predictions.

101 None Sayre et al. 
(2020)

CvT Data Suitability Evaluation

CvT Pre- 
Screen

Chemical data sets 
were eliminated 
for having too few 
points above the 
LOD, being 
radiolabeled, or 
failing CvTdb 
quality assurance

84 None
Padilla 
Mercado 
et al. (2025)

CvT Data 
Filtering

Chemical data sets 
that could not be 
described with a 
one- or two- 
compartment 
empirical TK 
model were 
withheld from 
further analysis.

81 with good 
empirical 
model fits

None
Padilla 
Mercado 
et al. (2025)

Investigation of Interspecies Bias

Interspecies 
Evaluation

Chemicals with 
Clint and Fup 

measured in both 
rat and human 
were used to 
determine the 
impact of using 
human QSPR 
models to make 
predictions in rat

115 None

Honda et al. 
(2019); 
Wetmore 
et al. (2013)

Collaborative QSPR Evaluation

Level 1

Direct evaluation 
of HTTK QSPR 
model predictions 
using in vitro TK 
Measurements 
(fup, Clint)

50 with 
measured in 
vitro TK 
parameters 
and CvT Data

4 (fup), 
5 (Clint)

Pearce et al. 
(2017b)

Level 2

Evaluation of 
predictions for full 
TK time course 
using HT-PBTK 
with HTTK QSPR 
(all time points)

Up to 81, 
depending on 
QSPR

5 +
Ensemble

Sayre et al. 
(2020)

Level 3

Evaluation of 
predicted TK 
summary statistics 
(Cmax, time- 
integral/AUC, Vd, 
t½, Cltot, Css)

Up to 81, 
depending on 
QSPR

6 +
Ensemble

Sayre et al. 
(2020)

QSPR models evaluated.
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combinations that could not be adequately described by simple TK 
models were excluded from subsequent analysis.

2.1.2. Data filtering based on suitability for modeling
The CvTdb aims to fully document TK concentration vs. time ex

periments in the public domain. Some of these experimental data sets 
are not suitable for TK modeling. TK concentration data may be 
confounded by limit of detection (LOD) and limit of quantification 
(LOQ). LOD refers to the minimal signal the chemical analysis method 
can detect, while LOQ refers to the minimal signal that can be inter
preted quantitatively as a chemical concentration. TK concentrations 
below the LOQ are qualitative and make estimating quantitative TK 
parameters difficult.

2.1.3. Data filtering based on empirical parameter estimates
Evaluation data were screened for suitability based on their ability to 

be described by empirical (that is, compartmental) TK models. Param
eters were estimated for empirical one- and two-compartment TK 
models for chemicals with available CvT data using R package “invi
voPKfit” (https://CRAN.R-project.org/package=invivoPKfit) (Padilla 
Mercado et al., 2025). Three models were considered: one- and two- 
compartment empirical TK models and a flat “null hypothesis” where 
there was no systematic change in concentration vs. time. The model 
with the lowest Akaike Information Criterion (AIC) value – indicating 
model parsimony – was selected (Akaike, 1974). Data sets where the flat 
model was selected were omitted from further analysis. The empirical 
model fit was then used for 81 chemicals as a “best case” prediction 

scenario for comparison with HT-PBTK models parameterized by either 
in vitro or QSPR model predictions.

For both one- and two-compartment models an elimination t½ was 
calculated from the terminal elimination rate constant, as in Table 1. For 
the two-compartment model, the volume of distribution at steady-state 
(Vcentral + Vdeep) was used as Vd. For both models, total clearance (Cltot) 
was calculated as Cltot = Vd * kelim. The estimated TK parameters for 
both models are provided as Supplemental Table 4.

2.2. QSPR models evaluated

The QSPRs evaluated are summarized in Table 3. Individual QSPR 
model predictions are available in fup from each QSPR. Table 4 sum
marizes the training sets for each QSPR modeling approach and pre
dicted endpoint. Training sets were evaluated for relative fraction of 
pharmaceutical chemicals and number of CvT evaluation chemicals 
included. The identity of pharmaceuticals was determined by presence 
among the 8600 pharmaceuticals on the ZINC 15 list (Sterling and Irwin, 
2015), as accessed from the CompTox Chemicals Dashboard (CCD) 
(Williams et al., 2017).

Simulations Plus ADMET Predictor values are sourced from Sipes 
et al. (2017). In that study, fup was estimated using ADMET Predictor’s 
“S + PrUnbnd” model. Clint was calculated as the sum of Clint predictions 
for the five major drug metabolizing enzymes: CYP1A2, CYP2C9, 
CYP2C19, CYP2D6, and CYP3A4. Each compound is first assessed by a 
classification model that determines whether it is a substrate or non
substrate of the enzyme. If classified as a substrate, the model predicts its 

Table 3 
QSPR models evaluated (note fup is unitless).

Model Predictions Original Units Modeling Approach Reference

Simulations Plus ADMET Predictor® fup and Clint fup: Unitless 
Clint: μL/min/mg of microsomal protein

Sum of CYP-specific Artificial Neural 
Network Ensemble (ANNE)

Sipes et al. (2017)

Pradeep 2020 fup and Clint fup: Unitless 
Clint: μL/min/106 hepatocytes

Random forest and support vectors 
method

Pradeep et al. (2020)

Dawson 2021 fup and Clint fup: Unitless 
Clint: μL/min/106 hepatocytes

Random forest, clearance organized 
by categories

Dawson et al. (2021)

OPEn (quantitative) structure-Activity / 
property Relationship App (OPERA)

fup and Clint fup: Unitless 
Clint: Log10 μL/min/106 hepatocytes 
(subsequent versions use arithmetic scale)

Weighted distance K Nearest- 
neighbors (kNN)

Mansouri et al. (2021); 
Mansouri et al. (2018)

Iterative Fragment Selection QSAR (IFS- 
QSAR)

t½ h Fragment-based Multiple Linear 
Regressors (MLR)

Arnot et al. (2014)

QSAR by the Insubria Group (QSARINS-Chem) t½ h Ordinary Least Squares MLR Chirico et al. (2021b); 
Papa et al. (2018)

In vitro Biotransformation Prediction-Suite 
(IVBP-Suite)

Clint only log10 mL/h/10^6 hepatocytes Ordinary Least Squares MLR Chirico et al. (2021a)

Table 4 
Summary of the QSPR training sets. a: The training set is proprietary, consisting of pharmaceutical data. b: The identities of the training set chemicals were anonymized 
in the 1.0 alpha version of the software, and chemical identities could not be algorithmically cross-referenced.

CvT Evaluation Chemicals

Endpoint Number of Training 
Chemicals

Fraction of Training Chemicals that are 
Pharmaceuticals

Number of QSPR model predictions Inside 
Domain of Applicability

Number of Evaluation Chemicals 
in Training Set

ADMET Clint a 1 51 a
ADMET fup a 1 51 a
Pradeep 

2020
Clint 642 0.27 47 50

Pradeep 
2020 fup 1139 0.44 47 51

Dawson 
2021

Clint 1600 0.18 50 45

Dawson 
2021

fup 1305 0.35 50 38

OPERA Clint 1346 0.23 77 49
OPERA fup 3229 0.3 74 53
IFS-QSAR t½ 1105 0.63 58 23
QSARINS- 

Chem t½ 1105 0.63 58 23

IVBP-Suite Clint 560 b 63 b
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sites of metabolism; otherwise, Clint is set to zero. For atoms identified as 
metabolic sites, the software estimates individual Clint values, and the 
total Clint is obtained by summing these atomic values. Thus, ADMET 
Predictor’s Clint predictions integrate three models: substrate classifi
cation, metabolic site prediction, and atomic Clint estimation.

The Clint and fup models for Dawson et al. (2021) were constructed 
using the method of Random Forests (Breiman, 2001) and four different 
open source chemical descriptor sets: PaDEL Descriptors (Yap, 2011), 
OPERA (Mansouri et al., 2018) physico-chemical properties, ToxPrints 
(Yang et al., 2015), and MACCS (Guha, 2007). A continuous (regression) 
model was developed for fup. A classification model was developed for 
Clint with categories (slow <3.9 μL/min/106 cells), moderate (3.9–9.3 
μL/min/106), and fast (>9.3 μL/min/106). The transition point between 
the moderate and fast rates of metabolism (9.3 μL/min/106 cells) is 
biologically relevant as the typical rate of blood flow to the human liver. 
The training set included a mix of ToxCast and pharmaceutical chem
icals. By design, the number of training chemicals varied between the 
three categories, such that greater emphasis was on identifying extremes 
(slow/fast) rather than emphasizing the most common, moderate class.

The Clint and fup models for Pradeep et al. (2020) were constructed 
using an ensemble model based on LASSO regression (Tibshirani, 2011), 
support vector machine (Cortes, 1995), random forest, and neural 
network multiple layer perceptron (Schapire and Freund, 2012) with 
open source descriptors from PubChem fingerprints (Goldsmith et al., 
2014), ToxPrints, and OPERA physico-chemical properties. Regression 
models were built for fup, while both regression and classification 
models were built for Clint. Only the regression Clint model is evaluated 
here. The training set used focused on chemicals available through the R 
package “httk” as of 2018.

Both Clint and fup OPERA models were built using datasets combined 
from different literature sources. After several rounds of automated and 
manual curation to reduce errors, variability, and outliers, the Clint and 
fup datasets consisted of 1056 and 1873 chemicals, respectively. The 
QSPR modeling was conducted using k nearest neighbors (kNN) (Taunk 
et al., 2019) coupled with a genetic algorithm (Alhijawi and Awajan, 
2024) to select the most relevant PaDEL and CDK (Steinbeck et al., 
2006) descriptors for each of the endpoints.

The IFSQSAR (Arnot et al., 2014) and QSARINS-Chem (Papa et al., 
2018) models for predicting human whole-body level t½ were developed 
from a compilation and review of in vivo human adult t½ data obtained 
from clinical trials and human biomonitoring studies for environmen
tally relevant chemicals including halogenated chemicals (Arnot et al., 
2014). The dataset includes 1105 chemicals with t½ spanning approxi
mately 7.5 orders of magnitude from 0.05 h (0.002 d) for nitroglycerin 
to 2 × 106 h (83 000 d) for 2,3,4,5,2′,3′,5′,6′-octachlorobiphenyl. The 
same training (50 % of chemicals) and testing (50 % of chemicals) data 
sets were used for the validation of both models (Papa et al., 2018) and 
both models were developed following OECD guidance for the appli
cation of QSARs in regulatory decision-making (Organisation for Eco
nomic Co-operation and Development, 2004, 2014). The IFQSAR model 
is a fragment-based approach (Arnot et al., 2014), while the QSARINS- 
Chem model uses whole molecular descriptors (Papa et al., 2018).

The software In vitro Biotransformation Prediction-Suite (IVBP-Suite) 
(Chirico et al., 2021a) was created within the CEFIC LRI ECO44 Project, 
from curated in vitro hepatic clearance data collected from different 
literature sources (https://arnotresearch.com/eas-e-suite/). IVBP-Suite 
QSARs were developed for chemicals grouped according to their com
mon reactivity pathway based on SMARTCyp ranks (Rydberg et al., 
2010), which were tested for CYP3A4, CYP1A2, CYP2C19 substrates, 
and they should work also for isoforms CYP2A6, CYP2B6, and CYP2C8 
(Zaretzki et al., 2012). Models were constructed using Multiple Linear 
Regression by Ordinary Least Squares (MLR-OLS) coupled with a genetic 
algorithm to select the most relevant descriptors which were calculated 
by PaDEL-Descriptors (Yap, 2011). Modeled datasets and QMRF reports 
for each model are available in the online version of the software 
(https://dunant.dista.uninsubria.it/qsar/?page_id=670). Predictions by 

consensus reported in this manuscript were generated by IVBP-Suite 
alpha version 1.0 (June 2021).

In Table 4 we indicate the number of evaluation chemicals with 
predictions inside each QSPR model’s domain of applicability. In Table 4
we also identify how many of the evaluation chemicals were included in 
the various training sets. Since many of the evaluation chemicals were in 
the various training sets, we still included QSPR model predictions in the 
CvT evaluations when they do not appear to be direct retrievals of a 
training set value. We define “direct retrievals” as predictions for 
training set chemicals that are within 1 % of the measured value (as in a 
nearest-neighbor algorithm identifying the compound itself). We are 
interested in evaluating the QSPR model predictions if the method of 
prediction is the same as what would be used for a chemical without a 
measured value.

QSPR-specific predictions were incorporated into the HT-PBTK 
model by altering the values used by the httk R-package. httk draws 
values from a single table which stores the fup and Clint values for all 
chemicals (httk::chem.phys_and_invitro.data). Whenever changes are 
made to the table, the httk functions subsequently proceed using the 
new values. The HTTK data can be returned to their default values via 
the command “httk::reset_httk()”. By default, no QSPR predictions are 
included in the table. However, QSPR model predictions can be loaded 
with the commands “httk::load_sipes2017(overwrite = TRUE)”, “httk:: 
load_pradeep2020(overwrite = TRUE)”, or “httk::load_dawson2021 
(overwrite = TRUE)” (Dawson et al., 2021; Pradeep et al., 2020; Sipes 
et al., 2017). The argument “overwrite = TRUE” is needed so that in vitro 
measured data are overwritten whenever a chemical-specific prediction 
is available. To facilitate comparisons, a custom function “clear_httk()” 
is included in the supplemental material which deletes all human Clint 
and fup values.

2.3. Ensemble model

Ensemble predictions were constructed after removing predictions 
that appear to be direct retrievals of experimental values rather than 
QSPR model predictions (Supplemental Table 5). An ensemble QSPR 
was constructed for fup. To make the discrepancies approximately 
normal, the logit transform was used to move fup from the range [0,1] to 
[− ∞,∞]. The ensemble fup was then calculated as the inverse logit of the 
mean of the logit-transformed fup values. The Clint QSPR differences 
originate with the various training sets and approaches used. Many of 
the Clint QSPRs are trained with human hepatocyte data reflecting the 
metabolism of one or more unidentified enzymes. ADMet, however, 
combines multiple CYP-specific models to identify the enzyme most 
likely responsible for the majority of metabolism. That is, for ADMet, 
metabolism is the sum of clearance by each enzyme, rather than an 
average across those enzymes that are substrates and those that are not. 
The ensemble Clint prediction was similarly constructed by using the 
maximum Clint value predicted by any QSPR. This ensemble approach 
represents a sort of logical “OR” gate or a “tenth man strategy” (Adday 
et al., 2023) for rapid metabolism – even when other predictors agree 
that the compound is stable, the job of remainder is to play “devil’s 
advocate”. Only if all approaches agree that there is no metabolism do 
we predict no/slow metabolism. In this way, metabolism prediction may 
be more similar to structure alerts for toxicity which might identify 
potential toxicity based on a single structural alert (Yang et al., 2020).

2.4. Analyses performed

2.4.1. Interspecies concordance
The evaluation data in Table 2 are largely drawn from in vivo ex

periments with rat, while the HTTK parameter QPSR models in Table 3
are trained to predict values for human. The HT-PBTK model scales the 
measured in vitro parameters to in vivo quantities using species-specific 
physiological data (Pearce et al., 2017b). To investigate the impact of 
the mismatch between using human HTTK QSPR model predictions for 
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Clint and fup and rat in vivo data, a set of chemicals with in vitro mea
surements of Clint and fup for both human and rat were investigated. The 
rat-specific HTTK data, reported by R package httk, were largely drawn 
from Wetmore et al. (2013), Honda et al. (2019), Black et al. (2021), and 
Lynn et al. (2025). Chemicals were limited to those where the Clint as
says were approximately concordant – that is, only those chemicals 
where the assays either agreed that metabolism occurred (both rat and 
human Clint > 0) or agreed that there was no metabolism (rat and human 
Clint both = 0). Discordant chemicals were omitted from the analysis.

First, the error in using human-measured Clint and fup to predict rat- 
measured Clint and fup was characterized. Then the two sets of mea
surements were used to predict Cmax and Css, in both cases using the 
same rat-specific physiological parameters and scaling. This allowed 
estimation of the error introduced by using human-derived HTTK 
measurements to make rat-specific HTTK predictions.

2.4.2. Level 1 analysis
Chemicals for which in vitro TK measurements (fup, Clint) were 

available allowed direct evaluation of QSPR model predictions. These 
data are drawn from the peer reviewed scientific literature and included 
in the R package “httk”. Predictions for chemicals whose data are known 
to be in the training set of a QSPR were removed from the Level 1 
analysis but were used in Levels 2–4. Unfortunately, training sets were 
not available for all QSPR models; therefore, to estimate a chemical’s 
inclusion in one of these unknown training sets, any prediction within 1 
% of the measured value was flagged as a possible training set chemical. 
Unless the training set was available and it could be confirmed that the 
prediction was not a “direct retrieval” of a measured value from the 
training set, these predictions that were “too good” were removed from 
all subsequent analysis. See Supplemental Table 5 for predictions that 
were removed. The in vitro measured values are available in Supple
mental Table 2. Kolmogorov-Smirnov tests for differences in the distri
bution of fold errors for the QSPR model predictions (also in 
Supplemental Table 2) were performed using R function ks.test.

2.4.3. Level 2 analysis
The chemical-specific HTTK QSPR parameters were then used in an 

HT-PBTK model. The HT-PBTK model predicted CvT curves as a function 
of outcomes in plasma (and other tissues, although the evaluation data 
were all plasma) for different species, dose route, dose amount, and 
observation times. The physiological aspects of the model were varied 
based on species-specific scaling estimates (Davies and Morris, 1993) in 
units of L/h/kg3/4 for flows and L/kg for volumes. Body weights of 70 
and 0.25 kg were used for human and rat, respectively.

R package “httk” (Pearce et al., 2017b) v2.6.2 was used to provide 
HT-PBTK model simulations for the Level 2 analysis. Note that we 
distinguish between the general research area of HTTK from the specific 
R package “httk” through capitalization. “httk” can parameterize a HT- 
PBTK model based on chemical-specific values for fup (unitless) and Clint 
(μL/min/106 hepatocytes). The HT-PBTK model that was used (“httk” 
model “gas_pbtk” from Linakis et al. (2020)) consists of well-mixed 
compartments for the gut, kidney, liver, lung, and rest of body. The 
model allows exposure by oral gavage and intravenous doses, and 
clearance by glomerular filtration (kidneys), metabolism (liver), and 
exhalation (lungs). Though the model allows for inhalation exposures, 
this route of exposure was not present in the CvT data used; however, the 
gas model makes exhalation a possible route of clearance for more 
volatile chemicals. The model is parameterized for a chemical using fup 
and Clint plus equilibrium tissue:plasma partition coefficients predicted 
with a modified Schmitt’s method (Pearce et al., 2017a; Schmitt, 2008) 
including aspects of Peyret et al. (2010). The in vitro measured or QSPR 
model-predicted Clint

in vitro (units of μL/min/106 hepatocytes) is scaled to a 
physiological Clint

liver (L/h/kg) using species specific values for liver vol
ume, density, and hepatocellularity using function httk::calc_hep_clear
ance (Breen et al., 2021). Because portal vein flow from the gut to the 
liver is modeled explicitly, a well-stirred correction is not necessary for 

metabolism. Oral dosing is subject to first-pass metabolism by the liver 
before the compound distributes systemically. Oral absorption was 
characterized in terms of two parameters: fraction absorbed from the gut 
and gut absorption rate. Fraction absorbed was assumed to be 100 %, 
with no gut metabolism. The same absorption rate was used for chem
icals based on the mean absorption rate observed across the chemicals 
profiled in Wambaugh et al. (2018). The model was simulated using 
command httk::solve_gas_pbtk with option default.to.human = TRUE. 
That is, since no rat-specific values are predicted by the models under 
evaluation, comparisons to data from rats were done using rat physi
ology but human in vitro TK parameters. Time-course HTTK simulations 
using the underlying QSPR-predicted fup and CLint were evaluated 
against rat and human in vivo plasma and blood concentrations. Ob
servations were divided into “early” and “late” times by calculating a 
midpoint time equal to half the time of the latest recorded observation.

2.4.4. Level 3 analysis
The QSPR model predictions were evaluated by comparing the HT- 

PBTK predicted TK summary statistics with values estimated from the 
in vivo-calibrated empirical TK models. The TK summary statistics 
include Cmax, AUC, Css, CLtot, t½, and Vd – see Table 1 for definitions. 
Based on QSPR-derived and in vitro measured parameters, these sum
mary statistics were calculated using various functions of R package 
“httk”. The Vd was calculated using the same calibrated Schmitt parti
tion coefficient algorithm as for the HT-PBTK model, but with all tissues 
lumped into a single compartment. Vd depends largely on physico- 
chemical properties (see Sensitivity Analysis below) with some input 
from fup (Pearce et al., 2017a) and was calculated using httk::calc_vdist. 
Css depends upon both Clint and fup and was calculated using httk:: 
calc_css(model=”gas_pbtk”) to include exhalation as a route of elimi
nation for semi- and volatile chemicals. For CLtot, the expression Css =

fbio / CLtot was converted to CLtot = fbio / Css so that the hepatic 
bioavailability (first-pass hepatic metabolism from httk::calc_hep_bioa
vailability) and the inverse of the steady-state concentration yielded the 
effective total clearance rate. For kelim, CLtot was converted to elimina
tion rate using the estimated Vd (kelim = CLtot / Vd).

The QSPR model predictions for human t½ (Iterative Fragment Se
lection QSAR (IFS-QSAR) and QSARINS-Chem (Papa et al., 2018) were 
first converted to rat predictions using allometric scaling (the ratio of rat 
body weight, assumed to be 0.25 kg, to human, 70 kg, raised to the ¾ 
power). t½ was converted to elimination rate and multiplied by the Vd 
from the ensemble model to estimate total clearance and Css. Summary 
statistics determined from the HTTK QSPR model predictions for TK 
statistics Cmax, AUC, and Css were compared to values estimated from the 
in vivo data.

2.4.5. Benchmarks used
We use three types of benchmarks to contextualize the QSPR model 

performance. First, for a best-case performance, we use the empirical 
(one- or two-compartment TK model) predictions based on parameters 
optimized (or “fit”) to the in vivo data, labelled as “In vivo Fits”. The one- 
and-two compartment models are simpler than the HT-PBTK model used 
for all other scenarios, but because they have been optimized to the in 
vivo evaluation data itself, they are expected to outperform the other 
approaches here. Second, we use the HT-PBTK model with the actual in 
vitro measured Clint and fup values. Finally, for worst case performance, 
we use y-randomization so that the in vitro measured Clint and fup values 
across all chemicals in the R package “httk” library are scrambled and 
assigned to the incorrect chemicals, labelled “HTTK-YRandom”. 25 
different sets of y-randomized parameters are drawn for each chemical. 
We do not y-randomize the physico-chemical properties so as only to 
examine the parameters being predicted by the HTTK QSPR models in 
Table 3.

A key unknown of TK IVIVE is whether compounds are subject to 
restrictive or non-restrictive plasma protein binding. Some compounds 
are modeled as being restrictively bound to plasma (that is, only the free 
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fraction of chemical is available for metabolism) while others may be 
more likely to be non-restrictive (the compound is so weakly bound to 
the plasma that both the bound and unbound fractions are available for 
metabolism) (Scheife, 1989). The form for effective intrinsic (flow-in
dependent) restrictive whole-liver clearance is: 

Cleffective
intrinsic,restrictive = fupClintrinsic,liver 

while the effective non-restrictive clearance is not reduced by the un
bound fraction in plasma: 

Cleffective
intrinsic,nonrestrictive = Clintrinsic,liver 

Restrictive plasma binding is distinct from flow restriction, which is 
accounted for in the HT-PBTK model using an explicit and finite blood 
flow from the hepatic portal vein (Wambaugh et al., 2025). Determining 
restrictive vs. non-restrictive chemicals requires in vivo data, and very 
generally restrictive clearance appears to be more common for phar
maceuticals (Wetmore et al., 2012). R package “httk” defaults to 
restrictive clearance for all chemicals because, for reverse dosimetry 
applications, it is a more conservative assumption (Rotroff et al., 2010). 
However, when in vivo data are available, as with the level 2 and 3 
evaluations, it is possible to make a judgement about the appropriate 
assumption for a set of chemicals.

2.4.6. Sensitivity analysis
Finally, we evaluated the relative sensitivity of overall prediction 

error to HTTK parameters in different phases of TK (Fig. 1). Empirical 
one- or two-compartment models were used. Compartmental model 
parameters were optimized to in vivo data and the better model was 
selected by invivoPKfit (Padilla Mercado et al., 2025) based on AIC. The 
in vivo-optimized compartmental model provided a baseline for a low 
error TK model. The source of the parameters for the compartmental 
models was then varied by TK phase. For each phase of TK (Fig. 1), 
parameters based on in vivo CvT data were replaced by those using the 
ensemble QSPR model predictions. This analysis used only the ensemble 
QSPR model predictions for HTTK parameters Clint and fup. Sensitivity of 
error was calculated by sequentially substituting values derived from the 
ensemble HTTK model for the in vivo-estimated values for absorption 
(Fbio – httk:: calc_fbio.oral), distribution (Vd – httk::calc_vdist), or 
elimination rate (from Cltot and Vd) (kelim – httk::calc_total_clearance). 
Calculation of Fbio was assumed to only include first-pass hepatic 
metabolism. First pass metabolism for Fbio depends on Clint and fup, and 
was calculated using httk::calc_hep_bioavailability.

2.5. Evaluation metrics

At each level, multiple statistics were used to evaluate predictions 

(pred) relative to observed values (obs) as appropriate. We note that if 
the predicted value is 0 then RPE = − 1. Average fold error (AFE) was 

calculated as AFE =
〈

log10
pred
obs

〉

. Absolute Average Fold Error (AAFE) 

was calculated as AAFE = 10

(
1
n
∑

|log10
pred
obs |

)

, where if pred = 0 and obs 
= 0 we assigned log10

0
0 = 0. Root Mean Squared Log Error (RMSLE) was 

calculated as RMSLE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑(

log10(pred + LOD) − log10(obs + LOD)
)2

√

.

3. Results

The primary focus of this analysis is to assess the accuracy of pre
dicted CvT curves using HTTK parameters from QSPR models (this is the 
“Level 2” analysis). However, of interest to QSPR developers is an ad hoc 
comparison of the QSPR model predictions themselves to in vitro 
measured HTTK parameters where available (Level 1 analysis). Of in
terest to chemical risk decision makers is the analysis of the accuracy of 
CvT TK summary statistics (Level 3) based on QSPR model predictions. 
To place all these analyses in context, we first examine the amount of 
noise introduced by using human QSPR parameters to predict in vivo CvT 
data that are largely from rats. We conclude by analyzing the sensitivity 
of HT-PBTK model simulations to the HTTK parameters predicted by the 
QSPR models.

3.1. Evaluation chemicals and predictions

There are 101 chemicals present in the initial public release of CvTdb 
(Sayre et al., 2020) that had chemical concentration versus time data 
resulting from either single oral gavage or single intravenous doses 
given to rats or humans.

As illustrated in Fig. 1, a typical TK concentration vs. time curve 
following a single oral dose consists of separate phases: 1) an initial 
increase driven by absorption of the chemical into the body; 2) a steep 
decrease driven by distribution of the chemical from the blood into 
tissues with varying affinities for the chemical; followed by 3) meta
bolism and excretion of the chemical (elimination) from the blood. 
Metabolism and excretion are also present during the earlier phases. The 

Fig. 1. Conceptual illustration of toxicokinetic concentration vs. time 
(CvT) data.

Fig. 2. Overview of the QSPR model prediction analyses performed. See 
also Table 2.
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distribution phase can be more pronounced depending on how much 
chemical the tissues can sequester (that is, if Vd is larger). There is no 
absorption phase following an intravenous dose, although there may be 
a very short initial phase as the chemical is distributed from the site of 
injection to the systemic blood circulation. The different phases of TK 
vary in sensitivity to the parameters Clint and fup analyzed here – see the 
sensitivity analysis below. The elimination phase is most sensitive 
because fup allows the estimation of glomerular filtration in the kidney 
(excretion) and both Clint and fup may inform the metabolic clearance in 
the liver (metabolism).

CvT data sets for eleven chemicals were eliminated in pre-processing 
before fitting. The eliminated chemicals were: Methanol, Tetrachloro
ethylene, Methyl tert-butyl ether, tert-Amyl methyl ether, Propylpar
aben, Phenazone, Flufenacet, Camphor, 2,3,7,8-Tetrachlorodibenzo-p- 

dioxin, Pentachloroanisole, and 2,3,4,7,8-Pentachlorodibenzofuran. In 
nine cases, a chemical-species combination has too few observations 
above the LOQ to allow meaningful modeling. Propylparaben was 
eliminated because there were no observations above LOQ. Penta
chloroanisol had only two timepoints. 2,3,4,7,8-Pentachlorodibenzo
furan had all measured concentration values below the LOD. In five 
cases, the TK data available were from radiolabeling studies or did not 
have concentration data collected from blood or plasma, which made 
them unsuitable for HTTK comparisons. The data for Phenazone (anti
pyrine in CvTdb) were from radiolabeled experiments which only allow 
estimation of elimination rate (that is, no concentration data are avail
able). Data for four chemicals were excluded because they did not pass 
recent quality control within the CvTdb database (Sayre et al., 2020).

The CvT data sets were modeled for their suitability to evaluate HT- 
PBTK model simulations by systematically optimizing parameters for 
one- and two-compartment models (Padilla Mercado et al., 2025). 
Separate parameter estimates were made for each combination of 
compound and species for which there were data. We assumed data sets 
that could not be described by a one- or two-compartment model did not 
conform to the general profile depicted in Fig. 1. As shown in Tables 2, 3
out of 84 remaining chemicals were removed from the analysis for being 
inadequately described by an empirical model. That is, when empirical 
TK model parameters were estimated, data for the removed chemicals 
were best described by the “flat” model (indicating that the data are too 
noisy to estimate empirical TK parameters).

The data for each of the 81 remaining chemicals could be described 
using either a one- or two-compartment empirical models. CvT data 
resulting from intravenous dose regimens are needed to estimate all the 
parameters (in particular, Vd) required to make CvT predictions. There 
were 12 chemicals where we could not estimate Vd: CvT data resulting 
from both intravenous and oral dose regimens are needed to estimate 
fbio. However, without fbio we can still make predictions for intravenous 
doses. There were 24 chemicals where we could not estimate fbio. Among 
the 81 remaining evaluation chemicals, 80 had data in rat and 3 in 
human. The three chemicals with the shortest t½ in rat were Imipramine, 
Simazine, and Propamocarb hydrochloride – mean of 0.009 h. The two 
chemicals with longest t½ in rat were Perfluorooctanoic acid and Po
tassium Perfluorohexanesulfonate whose mean of 1500 h was almost 40 
times longer than the chemical with the next longest t½. See Supple
mental Table 2.

The 81 chemicals included (according to lists accessed 12/9/24) 25 
pharmaceuticals (https://comptox.epa.gov/dashboard/chemical-list 
s/ZINC15PHARMA). Additionally, the evaluation chemicals included: 
13 from the non-confidential Toxic Substances Control Act (TSCA) 
active inventory (https://comptox.epa.gov/dashboard/chemica 
l-lists/TSCA_ACTIVE_NCTI_0224), 38 pesticide active ingredients 
(https://comptox.epa.gov/dashboard/chemical-lists/EPAPCS), 16 that 
are found in consumer products (https://comptox.epa.gov/dashboard/ 
chemical-lists/EPACONS), 7 per- and poly-fluoroalkyl substances 
(PFAS) (https://comptox.epa.gov/dashboard/chemical-lists/PFAS8a 
7v3), and 73 that are part of the ToxCast screening program (http 
s://comptox.epa.gov/dashboard/chemical-lists/ToxCast_invitro 
DB_v4_1). Note that a chemical could be in more than one of these 
categories.

3.2. Interspecies concordance

The evaluation data in Table 2 are largely drawn from rat in vivo 
experiments, while the QSPR models predicting Clint and fup in Table 3
are trained to predict in vitro values using human plasma and primary 
hepatocytes. Only 27 evaluation chemicals had both human and rat in 
vitro HTTK data. However, there are 113 chemicals with in vitro 
measured fup and Clint for both human and rat. The potential impact of 
the species mismatch was characterized using these chemicals. There 
were no in vivo data used in this interspecies analysis. This analysis 
allowed estimation of the error introduced by using human-derived 

Fig. 3. Interspecies concordance of HT-PBTK model simulations for Css, Cmax, 
and AUC for chemicals with parameters measured in both rat and human: 
(panel a) predicted steady-state plasma concentration (Css) predicted with HT- 
PBTK model parameterized using the in vitro measured fup and Clint, (panel b) 
predicted peak plasma concentration (Cmax), and (panel c) area under the 
concentration vs. time (CvT) curve (AUC). Point color and shape indicates 
whether CvT data were available for use in subsequent analysis here.
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HTTK measurements to make rat-specific HTTK predictions.
First, the error in using human-measured Clint and fup to predict rat- 

measured Clint and fup was characterized. As shown in Supplemental 
Fig. 1, in vitro measured values were roughly concordant. The rat-human 
differences were RMSLE 0.63 for fup and 0.99 for Clint. There were 
chemicals with observed clearance in one species and not the other. 
RMSLE was calculated using only the non-zero Clint values.

Then the two sets of measurements were used to predict AUC, Cmax, 
and Css. As shown in Fig. 3, RMSLE for Css was 0.67, RMSLE for Cmax was 
0.68, and for AUC RMSLE was 0.8. Errors were slightly smaller for the 27 

chemicals with CvT data used in subsequent evaluations – RMSLE for Css 
was 0.6, Cmax was 0.54, and AUC was 0.69. The RMSLE values indicate 
that the errors calculated using rat CvT data to evaluate predictions 
based upon human in vitro data may be overestimated due to interspe
cies differences.

3.3. Performance benchmarks

There were 56 chemicals with in vitro measured Clint and 57 chem
icals with in vitro measured fup, for a total of 57 unique chemicals. 

Fig. 4. Columns in this heatmap indicate the physico-chemical properties and measured/predictions for in vitro TK (intrinsic hepatic clearance, Clint, and fraction 
unbound in plasma, fup). Each row corresponds to one of the 9292 chemicals. The in vitro TK measurements (“Human.Clint.InVitro” and “Human.Fup.InVItroInVItro”) 
and predictions for these values from the various QSPR models (Table 3) are indicated by name. Data are normalized on a per column basis by centering (subtracting 
the mean) and scaling (by standard deviation). Thus, the “Value” of each entry in heatmap indicates the number of standard deviations from the mean. Blank values 
indicate no prediction. Hierarchical clustering was performed based on Euclidian distance.

Fig. 5. Evaluation of Predictions for Intrinsic Hepatic Clearance (Clint). Zero 
values were plotted at 10− 1, the solid line indicates identity (1:1) while the 
dashed lines indicate 3.2-fold difference. In panel A we show chemicals external 
to the training set (except for models ADMET and IVBP). In panel B we show 
chemicals that were in the training set.

Fig. 6. Evaluation of Predictions for Fraction Unbound in Plasma (fup). Zero 
values were plotted at 10− 4, the solid line indicates identity (1:1) while the 
dashed lines indicate 3.2-fold difference. In panel A we show chemicals external 
to the training set (except for model ADMET). In panel B we show chemicals 
that were in the training set.
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However, since there were only 51 chemicals with measured Clint and 
fup > 0, which are required for the HT-PBTK model, in vitro-based pre
dictions could only be evaluated for this set of 51 chemicals.

Hepatic metabolism is often assumed to be “restrictive” (Wetmore 
et al., 2012) – that is, rate of metabolism is limited to the fraction of 
chemical unbound in the plasma of the liver. However, for weakly 
bound chemicals it may be more appropriate to model the chemicals as 
“non-restrictive” (Krause and Goss, 2018, 2021). Currently there is no a 
priori method for determining plasma binding restriction. Here the HT- 
PBTK model was initially simulated both ways to identify the assump
tion that worked best for the evaluation chemicals.

In Table 5, we perform level 2 (CvT) and level 3 (AUC, Cmax) eval
uations of the in vitro data. This initial benchmarking informs what sorts 
of tests we should use in subsequent sections to compare the QSPR 
predictions. We do not perform a level 1 evaluation (comparing fup and 
Clint to in vitro data) because we are using the data themselves to make 
the predictions reported here. The different benchmarks for HTTK vary 
from a best case of when the in vivo data are used to empirically estimate 
parameters to a worst case of when y-randomized in vitro values are 
used. It appears clear that the majority of chemicals in this set are non- 
restrictive (RMSLE 1) rather than restrictive (1.2). While the restrictive 
case represents a benchmark for the performance of default application 
of “httk” (that is, R package httk defaults to restrictive clearance), for the 
evaluation of the QSPR models we choose to use the better fitting non- 
restrictive assumption going forward.

Note that the performance for y-randomization in Table 5 (1.2) is 
with the assumption of non-restrictive clearance. That result is therefore 
not directly comparable to the performance of restrictive clearance 
without y-randomization (1.2). Both can be compared to the perfor
mance of non-restrictive clearance without y-randomization (1) but are 
not meaningfully compared to each other since the y-randomization was 
only conducted for the non-restrictive case. The error of y-randomized 
restrictive simulations would be larger. Further note that the y- 

randomization as performed here only randomizes the fup and Clint 
values – that is, the correct, chemical-specific physico-chemical prop
erties, which are critical to predicting TK, are still being used when Clint 
and fup are randomized.

The differences between HT-PBTK parameterized with human and 
rat chemical-specific in vitro TK parameters (fup and Clint) appear to be 
significantly less than indicated by Fig. 3. That is, for whatever reason, 
the chemicals in this evaluation of CvT data appear to be less sensitive to 
the differences between human and rat. While the previous analysis in 
“Interspecies Concordance” assumed that 100 % of the differences in TK 
between humans and rats was summarized by differences in Clint in fup, 
in fact it appears that that these differences are not as significant for the 
chemicals analyzed here.

The metrics in Table 5 differ in sensitivity to the HTTK parameters, as 
indicated by the relative difference between using the values for the 
correct chemicals and the y-randomized values. For example, the dif
ference in prediction error for AUC is a factor of 1.7-fold (or 50 times) 
between the appropriate in vitro value (0.87) and the y-randomized 
value (1.5). In contrast, there is little difference for early CvT data – a 
factor of 1.1-fold between the appropriate in vitro value (0.86) and the y- 
randomized value (0.93). That is, the AUC is sensitive to the chemical- 
specific in vitro TK parameters (fup and Clint) and early CvT data is 
insensitive to these parameters (see the Sensitivity Analysis results). We 
expect the performance of HTTK with QSPR-derived inputs to generally 
be somewhere between the performance with in vitro inputs and the y- 
randomized inputs, depending on the subset of chemicals with available 
data.

Since the start of the collaborative trial for fup and Clint, new in vitro 

Fig. 7. Comparison of time course in vivo measured chemical concentrations 
(CvT) (Sayre et al., 2020) vs. predictions for empirical models fit to the data 
(“In vivo Fits”), and predictions for a HT-PBTK model parameterized with 
chemical specific Clint and fup values either measured in vitro (“HTTK-InVitro”) 
or predicted with various QSPR models. In each sub-plot. The y-axis shows the 
measured data while the x-axis shows the predictions made using chemical- 
specific parameters from the various sources. The solid line indicates identity 
(1:1) while the dashed lines indicate ten-fold difference.

Fig. 8. Chemical-Specific RMSLE for In vivo CvT data. The upper and lower 
extent of the box for each model indicates the 25th to 75th quantiles, the mid- 
line indicates the median (50th quantile) and vertical line indicates 1.5× the 
range of the box. The mean is annotated above the box.
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Fig. 9. Individual RMSLE by chemical and method. Lighter values indicate better predictive ability. The columns indicate different evaluation chemicals. The rows 
give the different prediction methods: The empirical fits to the data are given by “In vivo Fits”. All other values are calculated using the HT-PBTK model and either 
measured values (“In vitro”), y-randomized measured values (“Y-Random”) or the various QSPR models. White indicates missing values.

Fig. 10. Replacing In vivo Estimates with QSPR-based HTTK. The box-and-whisker plots indicating median, interquartile, 95 %, and outlier RMSLE on a per chemical 
basis. The lowest median error is when all parameters for an empirical TK model (Fbio, Vd, and kelim) are derived from the in vivo time course data (“All In vivo”). 
Substituting values predicted from the Ensemble QSPR with HT-PBTK indicates which aspects of TK are the largest contributor to error. “All Ensemble” indicates the 
error when all parameters are estimated with the Ensemble QSPR and HT-PBTK.
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data and QSPR-predictions characterizing oral absorption (that is, Caco- 
2 membrane permeability) became available (Honda et al., 2025). As is 
shown in Supplemental Table 9, inclusion of chemical-specific measures 
of permeability decreases the RMSLE in the non-restrictive case to 0.96. 
The default settings for “httk” currently assumes non-restrictive clear
ance and incorporates Caco-2 information – in this case the RMSLE is 
1.1. We do not make use of the Caco-2 related information in the sub
sequent analysis since these data were not available when the challenge 
was designed.

3.4. QSPR model predictions

The QSPR models evaluated are listed in Table 3. The number of 
chemicals for which predictions could be made (that is, domain of 
applicability) varied across the different QSPR models. Throughout this 
effort, we report statistics on different subsets of chemicals. Unfortu
nately, there were no chemicals with predictions from every QSPR. As 
above, we report QSPR predictions for chemicals where in vitro values 
are available as “in vitro” – this subset is the most directly comparable to 
the benchmarks above. Finally, statistics are reported for the maximal 
number of chemicals for which each QSPR model could make pre
dictions – denoted as “maximal”. There were 12 chemicals with 
incomplete QSPR predictions (either Clint or fup missing for all QSPRs): 
1,2-Dichloroethane, 8:2 Fluorotelomer alcohol, Acrylonitrile, Carbon 
disulfide, Dichloromethane, Hexachlorobenzene, Methyleugenol, Ni
trite, Perfluorodecanoic acid, Perfluorohexanoic acid, tert-Amyl methyl 
ether, Trichloroethylene. 4 chemicals had no QSPR-based Clint pre
dictions, and 10 chemicals had no fup predictions. Note that in some 
cases there were QSPR predictions removed for these chemicals because 
of their presence in a QSPR’s training set.

We summarize the chemical-specific properties and predictions in 
Fig. 4, where similar chemicals (rows) and properties/predictions (col
umns) are clustered together based on Euclidean distance. We assumed 
that properties/predictions were centered (mean changed to zero) and 
scaled (divided by standard deviation) such that the value reflects the 
number of standard deviations from the mean.

3.5. Level 1 analysis

Our first level of evaluation directly compared the predictions of 
QSPR models with the chemical-specific in vitro measured TK values. 
This Level 1 analysis allows characterization of the differences between 
the models. There were evaluation data for Clint for 56 chemicals and fup 
for 52.

3.5.1. Individual QSPR models
We evaluate model performance for Clint in Fig. 5. In both Fig. 5 and 

Fig. 6, wherever possible, we separate data that was in the model 
training sets (panel B) from external evaluation data that was not used to 
train the model (panel A). In panel B of both figures, it is clear than in 
some cases local QSPR models (that usually synthesize information on 
the most similar molecules to a structure) are making use of a single 
measured value for their prediction. Essentially, in these specific cases 
the local QSPR model is directly retrieving the in vitro measured values. 
Unless they are known to not be in the training set for a given QSPR, 
these low error predictions (Supplemental Table 5) are withheld from 
the Level 2 and Level 3 analysis since they do not help characterize QSPR 
performance for a chemical without measured in vitro parameters. Fig. 6
shows that all four models perform very well for predicting fup. Pre
dictions are highly correlated with observations.

In Table 6 we summarize the fold errors for the five QSPR models. 
The QSPR models perform similarly. Note that the Dawson et al. (2021)
model is categorical (that is, predicting only three values: slow, mod
erate, and fast) while the other models are continuous. Supplemental 
Table 6 gives the number of chemicals for which predictions were made 
for each QSPR model. As indicated by Table 6, very few evaluation 
chemicals were not already present in the training sets of the Dawson 
et al. (2021), Pradeep et al. (2020), and OPERA models. Each QSPR’s 
model predictions are compared separately to observations in Supple
mental Fig. 1.

We examined the distributions of fold errors between the predictions 
and the measured data using a Kolmogorov-Smirnov test. The QSPR 
errors were highly correlated. For Clint there were no QSPRs whose 
distribution of predictions significantly differed (p-value threshold 
<0.05, see Supplemental Table 7). Pradeep did not have any Clint pre
dictions for chemicals not in the model’s training set. For fup, there were 
no significant differences (see Supplemental Table 8).

3.5.2. Ensemble model
Due to the varying domains of applicability of the QSPR models and 

withholding those chemicals where the properties seem to be direct 
retrievals of experimental values, there was only one chemical in the 
intersection subset where all QSPR models could make a prediction. 
However, there were 69 chemicals where at least one of the QSPR 
models could make a prediction. An ensemble model was constructed 
that synthesized the predictions of all QSPR models. When multiple 
QSPR predictions were available, they were combined into a single 
value. For plasma protein binding the predictions were averaged, 
however for hepatic clearance the highest value was used. For clearance 
the assumption was that if any one model predicted rapid metabolism 
that the compound should be treated as rapidly metabolized.

3.6. Level 2 analysis

For the second level of analysis, we compared predictions based on 
the QSPR model predictions with actual CvT data. We show all CvT 
curve fits and predictions for each QSPR model, chemical, species, and 
route basis in the Supplemental materials (Supplemental Figures SupFig- 
ChembyQSPRCvTPlots.pdf). In the Level 2 (and 3) analyses chemical- 
specific predictions for Clint and fup were still analyzed even if they 
had been present in the training set for a QSPR model. The only 
exception were any potential direct retrieval values (that is, predictions 
within 1 % of measurement) were omitted from Level 2 (and 3) analysis 
unless they were confirmed to not be present in the training set for a 
given QSPR model.

All QSPR model predictions were used as inputs to an HT-PBTK 
model to make CvT predictions. Fig. 7 shows the Level 2 comparisons 
to in vivo observed plasma concentrations across the chemicals. Pre
dictions are made via HT-PBTK model simulations using each set of 
QSPR model predictions for all observed time points. Across the QSPR 
models, the predictions tended to be within a factor of ten (indicated by 
the dashed lines). We see chemicals where there are vertical bars in 
Fig. 7, indicating that the predicted concentrations were relatively 

Table 5 
Model performance benchmarks (root mean square log10 error – RMSLE) for 
level 2 and level 3 statistics. The number of chemicals used in each evaluation is 
given in parentheses in the column name.

In vitro

In vivo 
Fits 
(43)

Human Non- 
Restrictive 
(51)

Human 
Restrictive 
(51)

Rat 
(33)

Y- 
Randomized 
(51)

CvT 
RMSLE

0.29 1 1.2 1 1.2

Early 
CvT 
RMSLE

0.27 0.85 0.95 0.8 0.9

Late CvT 
RMSLE

0.28 1.1 1.4 1.1 1.3

AUC 
RMSLE

0.13 0.86 1.3 0.9 1.4

Cmax 

RMSLE
0.24 0.75 0.88 0.75 0.86
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constant over time while the observed concentrations changed. Typi
cally, these are chemicals where the CvT time course was especially 
biphasic, with an initial rapid decline and then tails where low levels of 
the chemical remained detectable for a long time. In the tails (vertical 
bands in Fig. 7), the predictions tend to underestimate observed con
centration. The panel labelled “HTPBTK-InVitro” in Fig. 7 shows the HT- 
PBTK predictions based on the measured values, where available. 
Finally, the panel “In vivo Fits” in Fig. 7 shows the predictions of 
empirical model optimized to the in vivo data.

For log-normally distributed properties the RMSLE is an empirical 
estimate of the standard deviation of a prediction. Prediction error as 
characterized by RMSLE is calculated first on a per chemical basis for 
each prediction method. That is, error is first calculated for predictions 
from a single method for each individual chemical aggregating over all 
doses, routes, and time points for that chemical. Then, for each predic
tion method, the mean RMSLE across all chemicals is reported in 
Table 7.

The QSPR models perform roughly equally for the chemicals with in 
vitro data, with RMSLE ranging between 0.9 and 1.1 in Table 7. Notably 
the QSPR models are close to the performance of the in vitro HTTK data. 
The ensemble predictor (using the mean plasma binding and the 
maximal predicted metabolism) performs similarly to the in vitro 
measured Clint and fup data.

In Table 7 we note that error was generally consistent regardless of 
the subset of chemicals used. The chemical subsets examined were: 1) 
chemicals with in vitro measured Clint and fup data; 2) chemicals without 
in vitro measured Clint and fup data; 3) all chemicals predicted by a given 
method (maximal), 4) pharmaceuticals, and 5) non-pharmaceuticals. In 
subsequent results, we present statistics from the maximal set of 
chemicals. In Table 7, we also examined the performance for both 
pharmaceuticals and non-pharmaceuticals, finding that both in vitro 
measured Clint and fup data and QSPR models tended to perform simi
larly or slightly better for pharmaceuticals. Pharmaceuticals are often 
designed to have short to moderate t½ and be cleared by the liver, which 
would lead them to be better described by the parameters Clint and fup.

AFE and AAFE results were also calculated and are fully presented in 
Supplemental Tables 10 and 11. In Table 8 we compare the RMSLE, 
AAFE, and AFE. AFE indicates bias, with tendency to over-estimate – the 
AFE of 0.22 for predictions based on measured in vitro parameters 

corresponds to an average over-estimation of 1.7-fold. Predictions based 
upon the empirical fits to the in vivo data slightly underestimated the 
observed concentrations.

In Fig. 8 we examine the distribution of per chemical RMSLE. In the 
first panel of Fig. 8, all observed time points are valued equally, without 
consideration of phase (absorption/distribution/metabolism) and mea
surement accuracy. In Fig. 8, the performance of HT-PBTK with Clint and 
fup parameters for a random chemical, while worse, is not a marked 
departure from the performance HT-PBTK with the parameters for the 
correct chemical. At early time points (second panel of Fig. 8), all 
methods are more accurate than for all time points (first panel). This is 
consistent with Fig. 1 – the early absorption and distribution phases are 
dominated by the Vd. Prediction of Vd largely depends on physico- 
chemical properties (which have not been randomized) and weakly on 
fup. See Supplemental Table 11 for RMSLE across subsets and predictive 
models for early and late times.

Also consistent with Fig. 1, the most discriminating data for judging 
HT-PBTK-based CvT predictions are the later time points, which char
acterize metabolism and excretion (the elimination phase of TK). In the 

Table 6 
Biases of the QSPR models for predicting in vitro measured Clint and fup values in terms of median absolute value (Abs) of the log10 fold error (log10 FE) and log10 fold 
error (log10 FE). No bias would be log10 FE = 0. The chemicals analyzed are those not in the QSPR training sets (where known).

Number of Clint predictions 
Compared

RMSLE Median 
Clint Abs log10 

FE

Median 
Clint log10 

FE

Number of fup predictions 
Compared

RMSLE Median 
fup Abs log10 

FE

Median 
fup log10 FE

ADMet 42 1.61 0.507 0.348 36 0.58 0.294 − 0.108
Dawson 3 2.2 0.524 0.376 11 0.406 0.281 − 0.0206
Pradeep 0 1 0.226 0.226 0.226
OPERA 4 2.78 3.42 − 0.379 4 1.28 3.4 − 1.56
IVBP- 

Suite 46 1.5 0.415 0.312 0

Table 7 
Mean per-chemical RMSLE for CvT predictions from different chemical subsets. RMSLE from Level 2 Analysis of predictions based on empirical model fits and a HT- 
PBTK model parameterized with chemical specific values either measured in vitro Clint and fup (“HTTK-InVitro”) or predicted with various QSPR models. RMSLE was 
first calculated on a per chemical basis and then averaged across chemicals. The number of chemicals in each calculation is given in parentheses. The sets of chemicals 
refer to those with in vitro HTTK parameters (“In vitro”), those without in vitro HTTK parameters (“No In vitro”), the maximum number of predictions available for each 
chemical, the pharmaceutical chemicals, and the non-pharmaceutical chemicals. *Note that OPERA predictions were available for many more chemicals, but cases 
where the nearest-neighbor algorithm returned the measured value were withheld to allow evaluation of performance on novel chemicals.

Chemical Set HT-PBTK-InVitro HT-PBTK-ADMET HT-PBTK-Dawson HT-PBTK-OPERA* HT-PBTK-Pradeep HT-PBTK-Ensemble

In vitro 1 (51) 1 (36) 1 (36) 0.9 (5) 1.1 (30) 1 (43)
No In vitro 0.91 (14) 0.84 (12) 0.74 (18) 0.79 (13) 0.83 (26)
Maximal 1 (51) 0.99 (50) 0.97 (48) 0.78 (23) 1 (43) 0.96 (69)
Pharmaceutical 0.92 (21) 0.85 (20) 0.8 (22) 0.58 (6) 0.88 (20) 0.82 (23)
Non-Pharmaceutical 1.1 (30) 1.1 (30) 1.1 (26) 0.85 (17) 1.1 (23) 1 (46)

Table 8 
Comparison of mean summary statistics for different QSPRs. Comparison of 
error measures RMSLE, AAFE, and AFE from Level 2 Analysis of predictions 
based on empirical model fits and a HT-PBTK model parameterized with 
chemical specific values either measured in vitro (“HTTK-InVitro”) or predicted 
with various QSPR models. Values were first calculated on a per chemical basis 
and then averaged across chemicals. The number of chemicals in each calcula
tion is given in parentheses. *Note that OPERA predictions were available for 
many more chemicals, but cases where the nearest-neighbor algorithm returned 
the measured value were withheld to allow evaluation of performance on novel 
chemicals.

HT- 
PBTK- 
InVitro

HT- 
PBTK- 
ADMET

HT- 
PBTK- 
Dawson

HT- 
PBTK- 
OPERA*

HT- 
PBTK- 
Pradeep

HT-PBTK- 
Ensemble

RMSLE 1 (51) 0.99 
(50)

0.97 
(48)

0.78 (23) 1 (43) 0.96 (69)

AAFE 15 (51) 10 (50) 12 (48) 5 (23) 11 (43) 13 (69)
AFE 0.22 

(51)
0.03 
(50)

0.065 
(48)

0.11 (23) − 0.11 
(43)

− 0.21 
(69)
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third panel of Fig. 8, we see that all HT-PBTK model simulations made 
with either QSPR model predictions or in vitro measured parameters 
perform worse in the elimination phase, which is driven by the esti
mated Clint. For the late time points, the specific values of the Clint and 
fup parameters (measured or predicted) have greater influence on the 
accuracy of the predictions – y-randomization performs notably worse 
than the QSPR models. The HT-PBTK model simulations based upon in 
vitro-measured Clint and fup data have an RMSLE which is indistinct from 
the QSPR models. Based on the full time series, the ensemble QSPR 
model predictions, using the most rapid predicted clearance, shows an 
average RMSLE similar to the in vitro measured data of 1; however, the 
OPERA QSPR shows an even smaller average RMSLE of 0.9. When 
considering only the later timepoints, several QSPRs have a RMSLE 
comparable to in vitro data (1), while y-randomization has RMSLE 1.2.

Fig. 9 shows the chemical-specific RMSLE values as a function of 
prediction method. In Fig. 9, each column indicates a different chemical 
and each row a different method. These data are also provided in Sup
plemental Table 12. Chemicals and methods have been clustered based 
upon Euclidean distance. White gaps mark chemicals that were not in 
the domain of applicability of different QSPR models (or, in the case of in 
vitro measured data, no measurements were available). We see that the 
ensemble QSPR model provides the best coverage of chemicals because 
the domain of applicability of the different QSPR models are varied. In 
general, the RMSLE for a given chemical appears to be similar across 
model predictions; however, there are several chemicals where the in 
vivo fits are substantially better.

Finally, as part of the Level 2 analysis we contrast the assumption of 
non-restrictive clearance and the use of the maximum predicted clear
ance in the ensemble model. For chemicals with moderate to high pro
tein binding (that is, low fup), a non-restrictive assumption enhances the 
rate of clearance. Similarly, using the maximum predicted clearance 
across the ensemble of QSPRs acts to boost the metabolism, independent 
of whether the chemical is highly protein bound. In Table 9 we consider 
maximum vs. mean ensemble QSPR Clint and restrictive vs. non- 
restrictive clearance. Again, assuming non-restrictive clearance for all 
chemicals in the evaluation set has lower error. For non-restrictive 
clearance, using the mean QSPR model prediction for Clint appears to 
work slightly better. However, if restrictive metabolic clearance is 
assumed taking the maximum prediction is slightly better than the mean 
for late time points, where clearance is most important.

3.7. Level 3 analysis

The Level 3 analysis evaluates prediction of TK summary parameters; 
specifically, Cmax, AUC, Vd, t½, and Cltot. Where available, we compare 
the predictions to the values estimated from the empirical fits to the CvT 
data. The values predicted for each method are provided in Supple
mental Table 13.

Early time points are dominated by the ability to correctly predict 
peak plasma concentration (Cmax). In Table 10, we examine each 
method’s accuracy in predicting the Cmax as determined from invi
voPKfit using the CvT data. Empirical fits are again best. Predictions 
based on in vitro measured Clint and fup data are not that different from 
QSPR model predictions. As shown in Supplemental Fig. 4, all the 
models tend to accurately predict Cmax, which largely depends on Vd (for 
intravenous doses Cmax = dose / Vd). Even the y-randomized predictors 

do reasonably well for Cmax since Vd depends strongly on physico- 
chemical properties (which are not randomized in our analysis) and 
weakly on Clint and fup (as in Fig. 1).

The most discriminating data for evaluating HT-PBTK-based CvT 
predictions depend on the later time points which characterize meta
bolism and excretion and inform metrics such as AUC. In Table 10, the 
empirical AUC estimates give a clear best-case scenario, while the y- 
randomization more clearly gives a worst-case scenario. In vitro 
measured Clint and fup data predict AUC with an RMSLE of 0.87, while 
the QSPR models range from RMSLE 0.5 to 0.96. The ensemble model 
predictions have a RMSLE of 0.83. In Supplemental Table 14 we 
calculate separate RMSLE for Cmax and AUC for pharmaceuticals and 
non-pharmaceuticals. We do not observe differences for the chemicals 
evaluated here.

As we see in Table 10, Cmax is estimated more accurately than AUC. 
From Fig. 1, we know that if AUC is less accurate than Cmax, we are likely 
dealing with an issue in metabolism or elimination. From the AFE in 
Table 8 and Table 10, we see that there is a tendency to over-predict 
concentrations (that is, predictions larger than observations lead to a 
positive AFE). All these factors suggest that the HT-PBTK model simu
lations based on Clint and fup tend to underestimate metabolism and 
elimination. The ensemble QSPR model, using the maximum predicted 
clearance, somewhat overcorrects and has a bias toward under
estimating AUC.

In Table 11, we also examine two quantities that inform our ability to 
predict AUC at late time points: t½ and CLtot. The QSPR models for Clint 
and fup data predicted t½ with RMSLE indicating errors between 0.99 
and 1.2 (9.8- to 16-fold). QSARINS-Chem, which was trained specifically 
to t½, data (rather than in vitro measured Clint and fup) produces better 
predictions, though the similarly-developed IFS-QSAR model performs 
more like the ensemble QSPR model. Finally, in Table 11 we examine 
predictions for CLtot, which depends on both elimination rate (inverse of 
t½) and Vd.

3.8. Sensitivity analysis

Table 11 indicates that different aspects of TK (as illustrated by 
Fig. 1) are predicted with varying accuracy by QSPR-parameterized HT- 
PBTK. To evaluate the impact of the errors summarized in Table 11, we 
used the parameters estimated directly from the in vivo data as the “best” 
case and then substituted QSPR-based values for different parameters. In 
Fig. 10, we first indicate the distribution of per-chemical RMSLE when a 
one- or two-compartment model is used with parameters optimized to 
the in vivo data. We then substitute parameters based on the ensemble 
QSPR and HT-PBTK for the absorption (Fbio), distribution (Vd), and 
elimination (kelim) phases of TK. The results suggest that the current 
methods used to estimate Vd add relatively little overall error on average 
to the HT-PBTK model simulations, while the assumption of 100 % oral 
absorption in the calculation of Fbio adds slightly more relative error. For 
both Vd and Fbio, there are small subsets of chemicals where the RMSLE 
is greater than 1. We see that the largest errors are observed when we use 
QSPR model predictions for Clint and fup data in estimating the elimi
nation rate, consistent with the idea that estimation of metabolism and 
other potential routes of elimination (for example, renal excretion) are 
the most challenging aspect of parameterizing an HT-PBTK model. In 
Fig. 10, we also include the distribution of RMSLE when all parameters 
are derived from the ensemble QSPR model – the errors from each phase 
of TK combine to produce a larger error, although the mean error is still 
within a factor of ten (RMSLE <1).

4. Discussion

Translation of in vitro concentrations that cause bioactivity to puta
tive administered in vivo doses by HTTK is key to next generation 
chemical risk assessment. Multiple government agencies and advisory 
committees have recognized that a high throughput (chemical-agnostic) 

Table 9 
Comparison of approaches to hepatic metabolism (restrictive or non-restrictive 
plasma binding) and aggregating ensemble predictions (mean QSPR model 
prediction vs. maximum QSPR model prediction).

RMSLE RMSLE Late

Clint Max Clint Mean Clint Max Clint Mean

Non-Restrictive 0.96 (69) 0.95 (69) 1.1 (69) 1 (69)
Restrictive 1.1 (69) 1.1 (69) 1.2 (69) 1.3 (69)
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TK model using chemical-specific measured in vitro parameters can be a 
powerful tool in linking administered to internal dose (Health Canada, 
2021; National Academies of Sciences and Medicine, 2017; Paini et al., 
2020; U.S. Environmental Protection Agency, 2021). There is an 
ongoing proliferation of HT-PBTK models developed to make use of 
these in vitro measured parameters to make chemical-specific pre
dictions (Armitage et al., 2021; Bernstein et al., 2021; Breen et al., 2021; 
Geci et al., 2024; Jamei et al., 2009b; Kapraun et al., 2022; Linakis et al., 
2020). While in vitro TK data have been generated for more than 1000 
chemicals, several thousand chemicals remain in need of TK informa
tion, leading researchers and regulators to potentially rely on machine 
learning to address this gap (Chou and Lin, 2023; Di Lascio et al., 2023).

Our goal is to establish the expected accuracy of time-course and 
summary-level TK predictions made without any in vivo or in vitro 
measurements and using only QSPR models. In this study, we find that a 
QSPR model approach may yield reasonable predictions of key TK pa
rameters for novel compounds. We believe a QSPR approach might be 
sufficiently reliable for prioritization when the error introduced by 
substituting QSPR model predictions for in vitro measurements is less 
than a fixed factor (such as 3 or RMSLE 0.48). Given that resources such 
as the CCD list more than 1,000,000 chemical substances, QSPRs for 
HTTK provide a path forward.

We have characterized the accuracy of HT-PBTK modeling ap
proaches for new chemicals based on structure-derived in silico pre
dictions of in vitro TK parameters. This was accomplished through a 
collaborative trial of five QSPR models for in vitro fup and/or Clint pa
rameters and two additional QSPR models of in vivo TK t½. To bracket 
the performance of the QSPR models, we have characterized the accu
racy of 1) using parameters empirically estimated from the in vivo data 
(that is, fits), 2) using in vitro measured parameters for fup and Clint, and 
3) using random (incorrect) draws from a large library of in vitro 
measured fup and Clint parameters (though the physicochemical prop
erties remained correct).

We have focused on the RMSLE statistic because it provides an es
timate of the prediction error for novel chemicals. Both RMSE and 
RMSLE are estimates of the expected error of a prediction (Chai and 
Draxler, 2014). RMSE is appropriate for errors with a constant standard 
deviation (that is, a normal distribution) while RMSLE is appropriate for 
errors with a constant coefficient of variation (that is, a log-normal 
distribution). Data in biology and medicine are often-log-normally 
distributed (Limpert et al., 2001). Since Clint, fup, dose, and 

concentrations all vary over several orders of magnitude, we believe 
RMSLE to be most appropriate. However, we have calculated other 
statistics characterizing accuracy (such as AFE and AAFE) and included 
them mostly in supplemental material.

QSPR modeling approaches can be either “local” (synthesizing in
formation on a novel chemical structure based only on sufficiently 
similar chemicals) or “global” (looking for systematic structure-property 
relationships across all available chemicals). OPERA is an example of a 
local model because it uses the k-nearest neighbors method. Because the 
training data for HTTK are relatively sparse (see Table 3), the number of 
similar chemicals can vary depending on structure. In some cases, a local 
model, when asked to make a prediction for a chemical in the training 
set, retrieves the measured value from the training set. In this case, a 
QSPR model based on a local model should perform very well – the 
QSPR is providing the measured data. Since the goal of the analyses was 
to characterize HTTK QSPR performance for novel chemicals, we have 
removed values that were less than 1 % different from the measured 
value (as an indicator of a local model with only one similar chemical in 
the training set). Because the CvT data are also limited (81 chemicals), 
we have included other training set chemicals in the Level 2 and 3 
evaluations.

This collaborative trial used a database of in vivo measured TK data to 
evaluate in silico approaches. In vivo data had to be carefully reviewed to 
include only those data that could be well-described by empirical TK 
models. By comparing predictions with observations, the RMSLE and 
other key statistics could be calculated. The RMSLE characterizes the 
expected accuracy for new predictions and can be interpreted as a co
efficient of variation for normally distributed errors about the predic
tion. For log-normally distributed errors, one has 95 % confidence that 
the actual value will occur within ±2 RMSLE of the prediction.

Here the QSPR models were first (Level 1) evaluated for their ability 
to predict the chemical specific TK parameters Clint and fup that are used 
by HT-PBTK models. These in vitro parameters do not directly corre
spond to in vivo TK parameters (for example, Vdist, kelim). Even if a QSPR 
model perfectly reproduces an in vitro measurement, the model predic
tion is only as good as the in vitro assays they were trained to estimate. 
However, the in vitro assays for Clint and fup provide relatively rapid 
methods for partially characterizing TK (Breen et al., 2021; Wang, 
2010).

In the Level 2 analysis, HT-PBTK models parameterized using QSPR 
model predictions of Clint and fup were evaluated across the full 

Table 10 
Mean RMSLE, AAFE, and AFE for Cmax and AUC TK statistics. Level 3 Analysis of predictions based on empirical model fits and a HT-PBTK model parameterized with 
chemical specific values either measured in vitro (“HTTK-InVitro”) or predicted with various QSPR models. “HTTK-YRandom” indicates the HT-PBTK model 
parameterized with a random permutation of the measured in vitro parameters but not the physico-chemical properties.

HTPBTK-InVitro HTPBTK-ADMET HTPBTK-Dawson HTPBTK-OPERA HTPBTK-Pradeep HTPBTK-Ensemble HTPBTK-YRandom In Vivo Fits

Cmax RMSLE 0.75 0.74 0.76 0.45 0.74 0.67 0.74 0.22
Cmax AAFE 8.3 7.9 8.9 3.1 9 6.8 12 2
Cmax AFE 0.18 0.13 0.17 0.017 0.098 − 0.095 0.31 − 0.12
AUC RMSLE 0.86 0.76 0.76 0.58 0.78 0.74 1.4 0.13
AUC AAFE 53 17 55 5.2 19 21 270 1.4
AUC AFE 0.36 0.14 0.13 0.24 − 0.046 − 0.22 1.3 − 0.072

Table 11 
Mean RMSLE for other key TK statistics (Level 3 Analysis). Analysis of predictions based on empirical model estimates and a HT-PBTK model parameterized with 
chemical specific values either measured in vitro (“HTTK-InVitro”) or predicted with various QSPR models. “HTTK-YRandom” indicates the HT-PBTK model 
parameterized with a random permutation of the measured in vitro parameters.

HTPBTK- 
InVitro

HTPBTK- 
ADMET

HTPBTK- 
Dawson

HTPBTK- 
Pradeep

HTPBTK- 
OPERA

HTPBTK- 
Ensemble

HTPBTK- 
YRandom

QSARINS- 
Chem

IFS- 
QSAR

t½ RMSLE 1.6 1.2 1.1 0.99 1.2 1.1 2.8 0.55 1.1
Cltot 

RMSLE
1.8 1.2 1.2 1.1 1.3 1 3.2 0.62 1

Vd RMSLE 1.1 0.92 0.94 0.94 0.65 0.95 0.89
Css RMSLE 1.8 1.2 1.2 1 1.3 0.98 3.2 0.62 1
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concentration time-course. However, TK in the absorption and distri
bution phases are relatively insensitive to these in vitro measured pa
rameters (Fig. 10). For example, distribution depends more on physico- 
chemical properties and only somewhat on fup for accurate prediction of 
equilibrium tissue partition coefficients (and, in turn, Vd) (Pearce et al., 
2017a). Further, the absorption rate does not depend on fup and Clint. 
However, the elimination phase of a TK time course is dominated by 
metabolism and excretion, which are both characterized to a larger 
extent by the in vitro Clint and fup parameters.

A key factor to consider is that while the in vitro TK data evaluated 
here were human, the in vivo data were largely taken from rats. Com
parison of the HT-PBTK predictions made with rat in vitro TK parameters 
against predictions made with human in vitro TK parameters indicated 
that species differences could inflate RMSLE by as much as 0.8. How
ever, a subset of the in vivo evaluation chemicals did have in vitro TK data 
measured in rat. For these chemicals, the HT-PBTK model parameterized 
with in vitro TK parameters for rat (the correct species) had error roughly 
the same as when human in vitro TK data were used (Table 5). Using 
chemicals with Clint and fup measured both in human and rat, we found 
that predictions of Cmax had mean RMSLE of 0.68 across chemicals when 
human data were used instead of rat. Human-substituted AUC had 
RMSLE of 0.8. If these errors were the result of independent factors, 
which they are not, then one could subtract the interspecies HTTK error 
estimate to get a better estimate of how well the human QSPR models 
predict in vivo data. The observed error for AUC was 0.87 (in Table 10), 
while the interspecies error was estimated to be 0.8. This means that the 
values estimated here may be more consistent with Wang (2010) – that 
is, RMSLE of ~0.5 – when interspecies differences are taken into ac
count. The estimated errors for the time-course data (Table 7) might 
similarly be overestimated.

To contextualize the Level 2 evaluation, statistics were also calcu
lated for empirical TK models optimized using the in vivo data. The 
empirical TK models were intended to approximate a best case, ac
counting for the inherent variability of the data themselves. As a worst- 
case scenario, HT-PBTK models were parameterized using in vitro Clint 
and fup parameters for random (incorrect) chemicals, while keeping the 
physico-chemical parameters correct. This y-randomization helps ac
count for potential correlations and a constrained dynamic range within 
the in vitro measured chemical data. During early time points (absorp
tion and distribution), the HT-PBTK models parameterized with QSPR 
models perform closer to y-randomized predictions than to empirical 
estimates from the data. The relatively small difference between the 
error associated with the y-randomized, QSPR models, and in vitro- 
measured values for the early time points indicates the greater impor
tance of physico-chemical properties for predicting TK in the absorption 
and distribution phases. However, at later time points (elimination 
phase), the separation between some of the QSPR models, in vitro 
measured values, and y-randomized predictions was larger, highlighting 
the increased importance of experimental measurements or in silico 
predictions of the Clint and fup parameters in this phase. It is worthwhile 
noting that y-randomization does not tend to produce extreme values 
because the data are clustered around pronounced modes of much more 
likely values (Dawson et al., 2021; Kirman et al., 2015).

In the Level 2 analysis, we have found the HT-PBTK model performed 
similarly with either QSPR model predicted or in vitro measured pa
rameters. TK model parameters estimated empirically from the full time- 
course of in vivo data had mean RMSLE of 0.29 across all chemicals, 
while HT-PBTK model simulations based on in vitro Clint and fup mea
surements had a mean RMSLE of 1. The mean RMSLE for HT-PBTK 
models parameterized using individual QSPR model predictions 
ranged from 1 to 1.3. Across the full time-course, both the in vitro 
measured data and QSPR model predictions only performed slightly 
better than the y-randomized predictions (y-randomized predictions 
were 1.6 times less accurate). For the elimination phase, the HT-PBTK 
models parameterized using in vitro measurements had a mean RMSLE 
of 1.1, while the RMSLE values for HT-PBTK models parameterized 

using individual QSPR model predictions ranged from 0.92 to 1.1. In 
comparison, the HT-PBTK models parameterized using y-randomized 
values had a mean RMSLE of 1.3.

Ensemble QSPR model predictions were constructed from the 
various QSPR models. The number of QSPR predictions varied from 
chemical to chemical, depending on domain of applicability and pres
ence of the chemical in the QSPR training set. For plasma protein 
binding, the predictions of the various QSPR models were weighted 
equally. However, the ensemble model for Clint used the maximum Clint 
value predicted by any QSPR. Using the maximum Clint corresponds to a 
logical “OR” function for rapid metabolism – if any of the QSPR models 
predicts that a compound is rapidly cleared, then we treat it as rapidly 
cleared in the ensemble model. Only if all the QSPR models agree that 
metabolism is slow do we treat a compound as being slowly metabo
lized. This is not a conservative assumption, as more rapid metabolism 
predicts lower tissue concentrations. As explored here, it is possible that 
the plasma binding of the chemicals in the evaluation set was “non- 
restrictive” with respect to metabolism. With restrictive clearance, the 
more highly bound to plasma is a chemical, the more the rate of meta
bolism is slowed. Restrictive clearance is considered a more conserva
tive assumption since it produces higher tissue concentration 
predictions and is the default for R package “httk” (Breen et al., 2021). 
Restrictive metabolic clearance only impacts chemicals that are 1) 
metabolized and 2) substantially protein bound. There is no known 
heuristic for identifying whether a chemical’s metabolism is restricted 
by protein binding. Instead, we must compare to Cvt data and identify 
the assumption that is more consistent with the data. However, espe
cially for non-pharmaceuticals, there is also a chance of extrahepatic 
metabolism, which would also act to increase the metabolism of a 
chemical regardless of whether metabolism was restricted by protein 
binding. Given that the HT-PBTK model used only includes renal 
clearance and metabolism in the liver, increasing the rate of liver 
metabolism might approximate the impact of extrahepatic biotransfor
mation. Non-restrictive clearance seemed to be supported for the 
chemicals examined here as indicated by the lower RMSLE (Table 5). For 
the chemicals evaluated here, when we assume non-restrictive clearance 
there is little difference between the use of the mean and maximum 
clearance (Table 9) for the ensemble QSPR model. When non-restrictive 
clearance is assumed, the maximum clearance ensemble QSPR model 
performs better, but this could be due to the chemicals actually under
going non-restrictive or extrahepatic metabolism.

In most applications of HTTK modeling using in vitro measured Clint 
and fup parameters, the metabolism of chemicals is assumed to be 
“restrictive”. The extent of restriction is likely due to the chemical af
finity for the plasma proteins to which it binds, with some “highly 
bound” chemicals likely to quickly disassociate from a binding site and 
be available for metabolism. Since binding affinity is typically unknown, 
restrictive clearance is assumed to be a conservative assumption for 
human health risk assessment since slower clearance results in higher 
tissue concentrations. However, the AFE suggests that the non- 
restrictive assumption is still slightly conservative from a human 
health risk assessment perspective (0.8 for restrictive versus 0.22 for 
non-restrictive; see Supplemental Table 9).

Although in vivo TK data for nearly 100 chemicals is a substantial 
collection, the existing annotated in vivo TK data do not constitute ma
chine learning “Big Data”, which might rely on thousands, if not millions 
of observations (Kitchin and McArdle, 2016). While more than one 
thousand chemicals have available in vitro Clint and fup measurements for 
QSPR modeling, even that is still a constrained, artifactual set of 
chemicals reflecting the correlation and the property distribution of the 
set as well as the dynamic range of the specific assays. For example, to be 
suitable for in vitro measurement, the volatility and solubility of the 
chemicals must be somewhat constrained (Richard et al., 2025). When 
chemical space is relatively narrow, the overall statistics may be biased; 
with the CvTdb, like any data set, one can only evaluate and model 
things that vary across the dataset. Among the in vivo evaluation 
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chemicals, only two chemicals had in vitro measured Clint above 103 μL/ 
min/106 hepatocytes and 94 % of measured values are within two-fold 
of the median.

Seven out of the 56 chemicals with in vitro HTTK Clint measured data 
have no observed clearance (that is, they are metabolically stable within 
the short-duration viability of conventional suspension hepatocyte 
metabolism models) compared with 260 out of 1046 measured Clint 
values (25 %) in the httk data set as a whole. The two parameters fup and 
Clint further interact in how they influence TK under restrictive clear
ance assumptions. If a chemical has low metabolic clearance, it may 
accumulate regardless of how highly the chemical binds. Conversely, if a 
chemical is highly bound, it may not matter how fast the free chemical 
clears.

QSPR models for metabolism are limited by many factors, including 
the limitations of the in vitro intrinsic clearance model. The majority of 
the in vitro Clint assays are based upon hepatocytes that are suspended in 
media and losing viability over a four-hour measurement (Rotroff et al., 
2010; Shibata et al., 2002). The dominant in vivo metabolic pathway for 
a chemical is therefore not necessarily present in vitro. It is then unsur
prising that the in vitro assays underestimate clearance (Sipes et al., 
2017). We currently cannot evaluate the impacts of three-dimensional 
aspects of chemical structures (including chirality) – all the QSPR 
models are based on two-dimensional structure descriptors because 
sufficient in vitro TK data do not exist to train the models otherwise (for 
example chiral pairs). Further, the data used to train the models are 
based on human biological material, but the data used for evaluation 
here are largely drawn from rat, again due to the much wider avail
ability of human than rat in vitro HTTK data (Honda et al., 2019; Wet
more et al., 2013).

Geci et al. (2024) recently evaluated HT-PBTK using a large data set 
of chemical concentration vs. time-course data (including the CvTdb) for 
which AUC and Cmax were estimated via non-compartmental analysis. 
They found that the error for HT-PBTK parametrized with measured in 
vitro parameters was 2.0-fold for Cmax and 1.8-fold for AUC. With in silico 
predictors, the best that Geci et al. (2024) could achieve was 2.2-fold for 
Cmax and 2.4-fold for AUC. A key factor considered by Geci et al. (2024)
that was not considered in most of the analyses here was intestinal 
permeability. We did perform limited benchmark simulations using oral 
absorption assumptions informed by either human Caco-2 permeability 
data or QSPR predictions (Honda et al., 2025). We found that additional 
data to inform oral absorption slightly reduces the RMSLE to 0.96 for the 
non-restrictive assumption and 1.1 for the restrictive assumption. 
However, the majority of the data analyzed here were for rat and there is 
little reason to expect concordance between rat and human oral ab
sorption (Musther et al., 2014). The sensitivity analysis (Fig. 10) indi
cated that while the oral absorption assumptions used here did 
contribute to the estimated error, the elimination phase was a greater 
source of our estimated error. A potentially important consideration is 
that Geci et al. (2024) reports the median, rather than mean error for 
their results, and for non-normally distributed results (such as log- 
normal, with a long “tail” of larger values), the mean can be much 
larger than the median.

Geci et al. (2024) is consistent with Wang (2010) which found that 
the SimCYP model, parameterized with in vitro measured data, could 
predict AUC within 2.3-fold when evaluated across 54 pharmaceuticals. 
Wambaugh et al. (2018) evaluated HTTK-based IVIVE for TK using just 
over forty chemicals including pharmaceuticals and non- 
pharmaceuticals. They found that Cmax could be predicted with 
RMSLE 2.2 and AUC could be predicted with RMSLE 2.0. As summarized 
in Table 10, here we found that Cmax could be predicted with an RMSLE 
of 0.74 with in vitro measured data and an RMSLE of 0.67 with the 
ensemble QSPR model. AUC could be predicted with RMSLE of 0.87 
using in vitro measured data and 0.76 using the ensemble QSPR model. 
We speculate that differences with the literature are due to 1) our 
curation of the CvT data by requiring that they can be fit to empirical 
models (Geci et al., 2024), 2) the inclusion of many non-pharmaceuticals 

(Wang, 2010), and 3) the inclusion of more chemicals (Wambaugh et al., 
2018). However, for AUC predicted with in vitro parameters, we observe 
an RMSLE of 0.87 for pharmaceutical compounds and the same for non- 
pharmaceuticals.

The summary TK statistics (Level 3) involved in the elimination 
phase were hardest to predict. The related quantities AUC, CLtot, and t½ 
are more challenging than Cmax and Vd. Vd only depends on partitioning 
(partially characterized by fup and otherwise predicted according to 
physico-chemical properties) and Cmax only depends on Vd; neither of 
these two quantities depend upon Clint. For AUC, optimized empirical 
TK model fits to the in vivo data indicated an RMSLE of 0.13 while the 
HT-PBTK model parameterized using in vitro values for random (incor
rect) chemicals had an AUC RMSLE of 1.5. Using chemical-specific in 
vitro measured data in the HT-PBTK model simulated the AUC with an 
RMSLE 0.87, while HT-PBTK model simulations using QSPR model 
predictions ranged in RMSLE values from 0.58 to 0.78. HT-PBTK models 
simulations based on the ensemble QSPR model predictions, using the 
maximum clearance predicted across all QSPR models, predicted the 
AUC with an RMSLE of 0.74. Using the ensemble QSPR model parameter 
predictions, the total clearance CLtot RMSLE is 1. For Cmax, the empirical 
TK model fits had an RMSLE 0.22, while HT-PBTK models parameter
ized using Clint and fup for random chemicals had an RMSLE of 0.73. 
Note that physico-chemical properties, which largely determine Cmax, 
were not randomized, which is why the sensitivity analysis in Fig. 10
shows Cmax is insensitive to Clint and fup. The accuracy of QSPR models 
for physico-chemical properties has been examined elsewhere (Cappelli 
et al., 2015; Gadaleta et al., 2024; Nicolas et al., 2018).

HT-PBTK model simulations using in vitro measured data had an 
RMSLE of 0.74 for Cmax QSPR models, while the HT-PBTK models 
parameterized using QSPR model predictions showed RMSLE values for 
Cmax ranging from 0.45 to 0.76, with the ensemble QSPR model pre
dictions being 0.67. Overall, predictions of Vd had RMSLE ranging be
tween 0.65 and 0.92. Here, we have assumed that Fbio only depends on 
first-pass metabolism, as informed by Clint. This bioavailability 
assumption does not appear to explain the observed discrepancies with 
in vivo data. The uncertainty analysis (Fig. 10) confirmed that improving 
HTTK estimates of the elimination phase would be most likely to 
enhance prediction accuracy. Two of the QSPR models predicted t½, so a 
QSPR prediction for Vd was needed to compare the predictions to in vivo 
data. However, as we see in Fig. 10, Vd is predicted relatively accurately 
from physico-chemical properties. For a set of 1352 pharmaceuticals 
Bouarar et al. (2019) found that they could directly predict Vd (RMSE 
0.208), CLtot (RMSE 0.103), and t½ (RMSE 0.154).

Mathew et al. (2021) showed that QSPR models trained to predict TK 
summary statistics (Vd in that case) outperform more mechanistic PBTK 
models. Further, QSPR models trained to true human t½ values (that is, 
QSARINS-Chem and IFS-QSAR) are trained to more chemicals (1105 
chemicals with empirical in vivo t½ rather than just those with in vitro 
HTTK data) and capture whole body clearance including whole-body 
level biotransformation (liver and other tissues), renal clearance, and 
exhalation. QSPR predicted t½ can be directly used in IVIVE of in vitro 
bioactivity (NAMs) and help interpret biomonitoring data and parame
terize exposure and bioaccumulation models. The t½ predictions with 
the Vd predicted by the ensemble model gave more accurate predictions 
of whole-body clearance (and therefore of Css) compared to the in vitro 
driven HTTK models. However, PBTK models permit greater insight into 
why values vary between chemicals and, more importantly, allow 
simulation of human variability (Barton et al., 2007; Breen et al., 2022).

While in vitro NAMs aim to decrease reliance on in vivo animal testing 
(Nelson et al., 2024), in silico NAMs, such as HTTK QSPR models, have 
the potential to reduce the need for in vitro testing (Pelkonen et al., 
2011). For a novel chemical, we hope the prediction errors estimated 
here provided conservative values of the accuracy of using HTTK with 
QSPR models. We believe that approaches like these can help inform 
public health risk-based prioritization of many more chemicals in 
commerce and the environment.
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